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A LIAPUNcN FUNCTIONAL FOR A ?4ATRIX

NEUTRAL DIFFERENCE-DIFFERENTIAL EQUATION WITH ONE DELAY

Abstract: For the matrix neutral difference-differential equation

~~( t )  + A~~( t — t )  = Bx(t) + Cx (t-T) we -eeft ~trtt~~~~a quadratic
c ,~’ ~~~~~

Liapunov functiona1~which gives necessary and sufficient conditions

for the asymptotic stability of the solutions of th;it equation .

(We ~tms-Her a difference equation approximation of the difference—

differential equation , and for this difference equation we- construct S
c.’

a Liapunov function ,from which we,obtainekhe desired Liapunov func-

tional by an appropriate limiting process. The Liapunov functional

thus obtained gives the best possible estimate for the rates of

growth or decay of the solutions of the matrix neutral difference—

differential equation . The results obtained are natural generaliza-

tions of previous results obtained for a matrix retarded difference—

differential equation with one delay .

1. Introduction.

Consider the linear autonomous matrix neutral difference-

differential equation with one delay

*(t) + A *( t — T )  = Bx(t) + Cx(t—T), t > 0 , (1.1)

where x(t) is an n-vector function of time, A ,B and C are

constant n X n matrices and I > 0. Our purpose

is to construct a Liapunov functional that characterizes the
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asymptotic behavior of the solutions of equation (1.1) .

For a linear autonomous retarded difference—differential

equation with one delay this same problem was considered

recently in [9] for the scalar case, and in [8] for the matrix

• case. We will show that the procedures developed in [9] and

[8] can be extended for the neutral difference-differential

F equation (1.1) .

Several authors , notably Hale [3 , 6 ] ,  Nelvin [14] and

Sendaula [15], have considered Liapunov functionals for neutral

functional differential equations. Those Liapunov functionals

only give sufficient conditions for the asymptotic stability of

the solutions. The Liapunov functional constructed in this paper

gives necessary and sufficient conditions for the asymptotic

stability of the solutions of (1.1); moreover, it provides the

best possible estimate for the rates of growth or decay of the

solutions.

As in [9], we first consider a difference-equation approxima-

tion of the scalar equation

k(t) + a*(t—’) bx(t) + cx(t—T), t > 0. (1.2)

For such a difference equation we construct, by means of well—

known methods, a Liapunov function that gives necessary and

sufficient conditions for the asymptotic stability of the solutions.

Taking appropriate limits on this Liapunov function we obtain the

desired Liapunov functional for equation (1.2).

~

-•- •

~
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The Liapunov functional for the matrix neutral difference-

differential equation (1.1) is then obtained as a generalization

of the one for the scalar equation. As in [8], the structure of

the Liapunov functional is completely analyzed.

The Liapunov functional  constructed depends critically

on a matrix function which must satisfy a special functional

differential equation. The existence , uniqueness and structure

of the solutions of this equation are described . This special

equation is a generalization of the one studied in [1].

2. The Neutral Difference-Differential Equation,

Let L2 ( [a ,b],.~~~
’) be the space of all Lebesgue square

integrable functions defined on [a ,b] with values on ~~~~~~~~~ and

denote by W~~( [a ,b],.~~n1 ) the space of all absolutely continuous

functions which have the first derivative in L2
( [a ,b],.~~ ) .

With I > 0 • fixed , consider the Hu bert space s~
’=

with the inner product

T 0 T 0 ‘T< 1 ’2
> = 

~l (0 2 ( 0 )  + J ~1(O)~~2 (O)dO + 
J~~~ l 

(0)~~2(0)d0

and the induced norm

T f O
i~ i i 2 

= ~T(0)~~( 0) + J P ( O ) ~~( O ) d O  + ~ T(Ø~~ (0 ) d O .
i— I  .1 _ I

Here, the superscript T denotes the transpose of a matrix.

Let x,x: [-T ,~~~) -~ then for t > 0 we define the functions

[—1 ,0] ~~n by x
~
(O) = x(t+O), *t(O) = c~(t+e).

—•m ~~-~~~~
--

~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~
.— •• —

~~~~~~~~~~~
——• —-— --
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• Consider the matrix neutral difference—differential equation

cc(t) + M(t—’) = Bx(t) + C(t—I), t > 0, (2.1)

where A ,B,C are n x n constant matrices , x(t) is an n—vector

and I > 0. Let

x0 = (2.2)

be a given initial condition , with ~ E ~~~~.

A solution of th3 initial value problem (2.l)—(2.2) is a

function x: [— T ,co) -
~ that satisfies the following conditions:

(a) x~ E ~~ for each t > 0;

(b) x satisfies the equation (2.1) a.e. (almost everywhere)

on [0 ,~~); and

(c) x0 =~~ .

It is known that the initial value problem (2.l)-(2.2) has

a unique solution which depends continuously on the initial data

in the norm of .~~~~

‘
. A proof of this result is given by Nelvin

[13], who used the norm

o 1/2

I I~ J I = J~~(_ t )  + [I J~~ ’T ( 0 )~~~ ( Q )  J
2
d0]

which is easily seen to be equivalent to the norm defined on our

Hu bert space.

We consider the solution operator T(t): ~~~~~ 
-
~ .~~~

‘
, defined
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by T(t)4 = x~, ~~ E ~~~~~~, t > 0. The family T(t), t > 0, is a

C0—semigroup. The infinitesimal generator ~~ of T(t) is

given by SI~ = ‘ and it has a domain ~~c/), dense in ~~~~
‘
,

defined by

= { c ~ E .~~dI~~
t C ~ ‘and ~ ‘(O) + M ’ ( — T )  = B~~(0) + Cc~~( — T ) } ,

[3].

Let a(d) denote the spectrum of si, i.e.,

= {XIdet[X (I+Ae~~
’
~) 

— B — Ce~~~ ] = 0}. (2.3)

Then, [3], there exists a constant I such that Re(X) < y for all

A E a(d). Also, for every C > 0 there exists a constant

K > 1 such that

I IT(t) I I  
~~~~~~~ 

< Ke~~~~~~t , ( 2 . 4 )

For our purposes, it is convenient to consider a representa—

tion of the solutions of (2.1) which is given for every t,u > 0

by the formula

xt+~
( O )  = [Y(t) + Y ( t _ T ) A ] x

t
( O )  +

(2.5)

+ J Y(u—~ —T ) [Cx
~~
(a) — Ax~~(a)]d~ ,

— ~~~~~~~ •-- —-—~~ ---- •—•-~.—~~. ~~•- ---~~ —--V ~~~~~~~~~~~~ —•—-—- - .~~~
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where the matrix Y is the solution of initial value problem

t—T
Y(t—u) = I + J d~Y(t—~— flA + J Y(t—~ )Bd~ +

u u

I
+ I Y ( t — ~ — T ) C d ~~,J u

(2.6)

Y(0) = I, Y(t—u) = 0 for t < u.

The integrals in (2.6) are Lebesgue-Stieljes integrals , Y(t-u)

as a function of ii is left continuous and Var Y(t— .) < ~~

on [u ,t] for every t > u, [7]. From (2.6) we have

Y(t-u) + Y (t—u—t)A = I + A +

t t
+ j [ Y ( t — ~~) B  + Y ( t — ~~— I ) C ] d ~3. ( 2 . 7 )

U

For x~ E ~~(5I ) it follows from ( 2 . 5 )  that Y ( t - u )  + Y ( t-u - I ) A

is an absolutely continuous matrix valued function . Then from (2.7)

we have that 
—

[Y(t-u) + Y ( t -u - t ) A ]  = -Y(t-u)B - Y ( t - u - t ) C, a .e .,

or

[Y (v) + Y ( v — t ) A 1  = Y ( v ) B  + Y ( v — t ) C , a . e. .  (2.8)

IL —. -= 
-
~
—

~ - • - -•--- • -• -::- •~~~• 
•—- -V-•V—- 

- 
~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
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3. A Liapunov Function for a Difference Equation Approximation
of the Scalar Neutral Difference-Differential Equation.

Our purpose in this section is the construction of a V

Liapunov function for a difference equation approximation of the -

•

scalar neutral difference—differential equation

*( t) + a k ( t — I )  b x ( t )  + c x(t - t ) ,  t > 0 . (3.1)

Let N be fixed , and let the intervals [0 ,=), [—1 ,0] be sub—

divided in subintervals of equal length . Denote the values of

the function x~~
( O )  at the mesh points 

{x 1 (_J ~) ]~ by x~ ,

k = 0,1,..., J = 0,... ,N. We thus obtain the d i f f e r e n c e  equation

( 0 0 N N T 0 Ni xk+l — xk + a ( x k+l 
- xk) 

= 
~ 

(bxk + cx k
)

I ~ J—lXk+l 
= X

k 
, J = 1,... ,N,

an approximation to (3 .1) . We assume , in this section , that

c ~ 0, a ~ 0, and rewrite this difference equation in the form 
V

= Ay k ,  ( 3 . 2 )

where denotes the (2N+l)-dimensional vector

0 1  N_1 N T

0 1  N Xk Xk ‘
~k~~~ k= 

~~~~~~~~~~~~~~~~~~~~~~~~~ 
— a 

I 
— a (3.3)

and the (2N+l) x (2N+l) matrix A is given by

V — ---- - V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(1+~~-b) 0 . . 0  ~~c 0 . . . . 0 ~~c

1 0 . .0  0 0 . . . .  0 0

o o . . i  0 0 0 0

A —
~~~~~~~~ 0 . . 0 -a 0 . . . . 0 —a . (3.4)

0 0 .. 0 0 1 . . . .  0 0

0 0 . . 0  0 0 . . . .  1 0

It is well—known how to construct a Liapunov function for the

difference equation ( 3 . 2 )  so as to obtain necessary and sufficient

conditions for the asymptotic stability of its solutions , [11,121.

For this purpose, we consider a Liapunov function given by

V (yk) = Y~
DYk, where D is a positive definite matrix. Then the

forward di f ference LW (y k
) = “~~

‘k+l~ 
- 

~~~~ 
is given by

A TAV (yk) = _y
kEyk, where —E = A DA - D. If E is a positive

defini te  matrix , then the solutions will  be asymptotically stable.

On the other hand , if we have asymptotic stabili ty, i . e . ,  all

eigenvalues of ~ have modu lus str ict ly less t han one , then for

every positive def in i te  matrix E there exists a unique positive

defini te  matrix D that  sa t i s f i es  the equation ~
TD~ - D = -E.

Moreover , if for some real number u ,  0 < 1, all the

eigenvalues of the mat r ix  ,!.... A have modulus less than one,



V~~~~~~~~~~~~~~~ V ~~~~~~~~~~~ • . V. . V ~~~~~~~~~~~~~~~~ V , ~~~~~~ VV VVV

then to every positive de f in i t e  mat r ix  E there corresponds a unique

positive def ini te  matr ix  D that sa t is f ies  the equation

ADA — (l—f?)D = — E .  ( 3 . 5 )

If = y~ Dy~~ then A V ( y k ) = _y
~
Eyk - i~y~Dy~ ~ -

The matrix A of particular interest here is seen to be

equivalent to a matrix in companion form. In this case, for the

existence , uniqueness and positive definiteness of the matrix D of

equation ( 3 . 5 )  it suff ices , [ 12] ,  for the matr ix  E to be positive

semidefinite and not identically equal to zero. This remark

allows us to choose particularly simple matrices E; our purpose

is to obtain as simple a form as possible for this matrix D and

fo r this it is convenient , given the special form of the matrix A,

to res t r ic t  ourselves to certain choices of E. We shall represent

the unique solution D of equation (3.5) in the form

• T T - Tr r

D =  r Q Q (3.6)

where c~ is a scalar , rT = (r 1,.. . ,rN) and ~T = 

~~1’~~” 
r )

are N—dimensional  vectors ,  Q = (q.~~) and = (~i 1~~) are

N X N symmetric matrices and Q = (q~~ ) is an N X N matrix.

The subst i tu t ion of ( 3 . 4 )  and ( 3 . 6 )  into eauation ( 3 . 5 )

suggests that a particularly simple form for the matrix D can

_ _ _ _ _  - 
V • _ _ _ _ _  ~~ • ____
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be obta ined if the matrix E = ET = (e..) is chosen to have zero

entries everywhere except the elements ell,el N+l 
= eN+l lf

el , 2N+l = e21~~11 , eN+J I~+l, 
CN+1 ,2N+1l e2~ +1~~~+1 and e2l~+l 2N+l.

Moreover , the simplicity of the s t ruc ture  of th e mat r ix  A allows

T Tfor the vector r = r = (r1,... ,r~1) and for the matrices Q,Q

and 0 to be related b” q .  = ci . . = CT . fo r— -‘ 1 ,J  ~1,J 1 ,J
i 
~ 

j, i ,j  = 1,... ,N and for  ~j . .  = 0 for  i — 1,... ,N if the

following equations are satisfied

~~~ 
= ( l—i~)q11~~~1, i, j = 2,... ,N, (3.7a)

= (l_
~~~ij_ 1, j_lf i = 2,... ,N, (3.7b )

r
~ j~

. c — ag. 1 
— (l—~)~ 1.1~~ = 0, i = 2,... ,N, (3.7c)

(1 + ~~b)r. + (1 — ~~)q1~~ — (1_i
~
)r
~~1 

= 0, i = 2,...,N, (3.7d)

and the nonzero elements of E are selected as

el ,N+l = eN+l,l = el 2N+l 
= e2N+l l 

=

= - [ (k  c” — ar 1) (1 + ~~~
- b) + (1 — 

~~~~~~ cr1 +

2
+ 
~~~ 

- (l-i
~
)rN ], (3.7e)

- - • V ~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~V _ : V V V V V T~~~~~~r~~~~V~~~~~~~~~~~~
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= — [( i c) 2
c~ — 2ar 1 ~ c + a2~ 11 

— ( l_ i~)~~~ ,~~J f  ( 3 . 7 f )

e2N+l 2N+l 
= — [( k c)2~ — 2ar1 ~ c + a2~ 11 

— (l_
~
)
~~N N J , (3.7g)

e2N÷ l N+l = eN+l,2l~+l = — [ (
~~ c)~~ 

— 2ar1 ~ c + a2~ 11]. (3.7h)

From equations (3.7a—b) it follows that

~~~~ 
= 

~~~~~~~~~~~~ ~~~~, N _ ( ~~~_~~~) 1  i. > (3.Ba)

= (1~~~)
1 1

q1,1
, i = 1,... ,N ( 3 . 8b )

q . .  = (l—p )~~~
1
q1 1 ,  i = 1,... , N (3.Sc)

Equations (3.7c—d) , through use of equa~’ ions (3.8a-c) ,

yield

— 

~~~~~~~~~~~~~~~~~~~ 

+ a(l_~ ) ~
1(q~~~~~(. 2) 

— 
~~~~~~~~~~~~~~~~~ 

=

= ~~ b~~~ 1_1 + i~ ~~~~~~~~~~~~~~~~ 
+ (1_ ~ )

_N+1_l
q (• l) ~

i = 3,... ,N, (3.9)

r1 ~~ C = (l~~ )~~
N+l (a + ~~ c)q~~~1 1  + (1 + ~ b)q~~ 1. (3.10)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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letting V ( x k
) : 

~~~~~~~~~~~~~~~~~~~~~~~~~

‘ where Xk = ~~~~~~~~~~~~~~

= (
~ c) ~~~~ , 8 = c q11, I = a ~ q11, jV! = 

~~~

- p ,  and using ( 3 . 7 a — d ) ,

( 3 . 8 a — c ) , ( 3 . 9 )  and ( 3 . 1 0 ) ,  we obtain the desired Liapunov func t ion

in the form

v(xk
) = cx (x~ )

2 
+

+ 2x~ ~~~[a (1  - 2 ~~~~~)
N+1

q (. +

~ (cx a I

+ 2x~ ~ [(1 
— 2 ~~ P )~~~~

’(a + ~~ c)q~~~~ 1 + (1 + ~~

0 1

N 

~ (cx~ - a 
x

~~~~~
:k 

~ ~~~~+
.

+ 2  ~~ •
~~ (cx~~~- a  k k ) ( 1 2 1 )

i=2 j=l

i— I- ix - x
j k k i i. ( c x — a  

~N

+ 
i=l 

- 2 !)~~~~~~(x~ )
2 
~ +

+ ~ (1 - 2 
T
)~~N+i~~( k 

- X~~~ 2 ~ 
, (3.11)

i=l V

I
and its forward difference , divided by ~ ,

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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IW(x
k
) - 2 1 - 2—

I = [2e4 (b+p )+c~b

N

-

• 

+ 2 ( 1  + b) (c-ab) [(1 - 2 ~ ~~~~~~~~ + ~~ c)q~~~~ 1 +

+ (1 + ~ b ) q~~~1l (4)
2 

+

+ [~~c
2 

~ 
— 2 ~ ac2 [ ( 1  — 2 ~ ji)~~~~~ (a + ~~ ~~~~~~~~ +

+ (I + ~~ b ) q
1~~1

] + ~~2 - (1 - 2 ~ )NTh (x~)2 +

+ [~ a
2 
~ 

— 2 ~ a
3 [(l — 2 ~ p )

_N+l (a + ~~ c)q~~~~ 1 +

N-i N
I — 2  I N- X

k 
_ X

k 2+ (1 + ~~ b)~~~1l + Ia — ( 1 — 2 
~~ I] ( 

~ +

+ 2 [~~c ( l  + b) + [ ( 1  — 2 ~ p )
_N+l

(a + ~~ c)q~~~_1 +

+ (1 + ~~~ b)q~~ 1][(l 
— 

~~
) 

~~~ C
2 

- ac(l + b ) J  +

+ bc~ — (1 — 2 ~
) [aq~~ 1 + (1 — 2 p )J q~ N 1] c ] x~ x~ +

+ 2 [—~a(1 + b) — [(I — 2 ~ ~)
_N+l

(a + ~~ c)~~~,N_l 
+

+ (1 + ~ b ) q
1~ ~J ~(l - 

~~
) ~~ ac - a2 (1 + b )1  -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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N-i N

— ab~ + (1 — 2 i~) [aq~~ 1 + (1 
— 2 ~ p)aN N l ]a1x

~ 

Xk Xk +

÷ 2 [ — ~ ac ~ + 2a 2c ~~~
- [ ( 1  - 2 j~

. )_N+l ( + ~~~
- c) c~~~~4~~ +

N—l N

+ (1 + ~~~ b)~~~,1] 
- ca~ ]x~ 

Xk — 
xk 

— 2
~~~

(xk)l (3.12)

where the off diagonal terms of the Q matrix must be related by

— 

N, i—l 
— a 1 — 2 ~~~

- )~~~h l  ~~,~
_ (~_l) —

T N~~ 
I

f~i

I —N+i—l
= 

~~N,i—l + 2hicI~~ _2 + (1 — 2

i = 3,...,N, (3.13)

4. A Liapunov Functional for the Scalar Neutral
b’lfference—Differential Equation.

The results of Section 3 permit us to obtain a Liapunov

functional in an explicit form for the scalar neutral difference-

differential equation (2.1). For this purpose consider the limiting

process described by

xk(J) ~~~~~~~~~~~ 
x
~~

( O )
~ 

— I  < 0 < 0 ,

~~~~~~~~~~~~ N-~-°°~ 
q (—O ), — T  < S < 0, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Q(xk) N-~~ 
V (x t)i

~
V(xk) 

_ _ _ _ _

I N-~~~ 
V (xt)i

N

u r n  (1 — 2 ~ )i—N+l -* e
2
~
0
, — ‘r < e < o.

These formal limits applied to equations (3.11), (3.12) and (3.13)

yield the equations

V(xt
) = &x~~( 0) +

+ 2x~~(O)J (ae 2 O+flq(I+O ) + q(—O)) (cxt (O) 
— ax~~(O))dO +

r O t O
+ 2 I I (cx (0) - ax ’(0))e2~~ ~~~q(I+0-8)

.
) — -t J O  ~ t

. (cx~~(8) — ax~~(8))d8d0 +

+ 
J
°

e2
~~

0
~~x~~~o d o  + e2~

0
~ xt

2 (0)dO , (4.1)

V(xt
) = [2~~(b+p ) + + b~~ +

2p1 2
V 

V + 2(c—ab) [aq(I)e + q (0)]]x~~(0) +

+ [~ c
2 

- ~e
2
~~ }x~~(-I) + [~ a

2 
- ~e 2

~~~]~~~ ( - I )  +

L 

+ 2c[t~—q (I) — 2aq(0) — a2q(I)e2~~ + b
~
]xt(0)x t

(_I) —

—- V .
~~~~~ ~~~~~~~~~~ •—  - • - - -~~~~—•—---  -- --V .- ~~~~~~~~~ ~~~~~~~~~~~~
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— 2a[~ —q(T) — 2aq(0) — a2q (T)e2~
t 
+ bY]xt(0)*t

(_T) —

— 2ac
~
xt

(_I)*
t
(_T) — 21V 1V ( x

t
) , (4.2)

and

-: q ’ (—O) — ae 2 0
~~~q ’o + ~) = —(b+2i~)q(— 0) 

—

—e2~~~~~~ cq (O+T). (4.3)

At this juncture, it is convenient to introduce the notation 
V

defined by the equations

g ( 0 )  = p ( t _ O ) e ~~~~
T _ O )

,

and to let

a + p (O) + 2ae~
1 ’tp(T) + a2p(O)e2U1 ,

= ~~~~ ,

= ~e~
1 

,

which introduced into (4.1), (4.2) and (4.3) yields the equations

V(xt) = ~x~~(O) + e~~ f
° e2U0~ x~~o)do

+ ~~~ f
° e2~

0
~ x~

2 (o)do + 

V~~~~~~~ V V. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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+ (p(0) + 2ae~
’p(T) + a2p ( 0 ) e 2

~~~)x ~~( O ) +

+ 2x
~~
(O) J e

’
~
0) (p(I+O ) + ap (—O)e~

T).

.(cx t(O) — ax~~(O))dO +

+ 2 J J ( c x t (O) - ax~~( U ) ) e u1(2T+O
~~~~p (~~_O )

(cx~~(O) 
— ax~~( O )  ) d ~ dO , ( 4 . 4 )

~
‘(xt) = [2(b+j~x)~ + e~~~(B+b

2c) +

+ 2 (b+ji)p (0) + 2e~~ap(I) (b+p) +

+ 2e2~~ a(c+ap)p(0) + 2e (c+a~ )p(I)]x~~(O) +

+ [~ c
2e~~ 

- ~e~~~ ]x~~(-T) + [e~~a
2
~ - e~~~~~~~] k~~ ( -I )  +

+ 2c[&+b
~
e
~~

]xt (O)xt
(_T) —

- 2a[
~
+b
~
e
~~

]xt (O)$c
~~
(_1)

— 2aceóT~ xt
(_I)*

t
(_T) -

— 2Pv (xt) (4.5)

and

hilL — —-— -- —-- ‘ V -.- -- .
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p !(O) — a e~~ p ’(I—U ) = (h+~i)p(O) +

+ (c+a~i)e~~p (T—0). (4.6)

Equations (4.4), (4.5) and (4.6) have been obtained by formally

taking limits on the Liapunov function for the discrete

approximation to our original functional differential equation . It

is easy to see that (4.4) is a well-defined functional on ~~~~
‘ and a

straightforward although laborious computation shows that , if

V (4.6) is satisfied , (4.5) represents the rate of change of the

functional (4.4) along the solutions of the scalar neutral

functional differential equation with initial conditions in the

domain of the generator; we postpone such an analysis , and use

the results thus far obtained as motivation for the method of

analysis presented in the next section .

5. A Liapunov Functional for the Matrix Neutral
Difference—Differential Equation.

The results of the previous section suggest a form for a

Liapunov functional for the matrix neutral difference—differential

equation (2.l)— (2.2). For this purpose, on the space i~~~
’ consider

the real symmetric quadratic form

V(~ ) = ~
T(o)N~ (o) + e~~ j

O 
,T(Q)R

2
~
O
~~(o)do +

+ eUI 
f
°~~T’ (O)Se 2~

0
’(0)d0 +
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+ 9,T(0) [P(O) + e~~A
TPT(T) + e~~ P([)A + e

2
~~

t
A
TP ( 0 ) A ]~~( 0 )  +

+ 2~
T
(O)J e~~~~~~~(P(u+T) + e~~

T
ATpT (_ c x ) ) . ( C~~( c x )  — A~~’ ( a ) ) d u  +

+ 2 J J ( ~
T(a)CT - ~T’ ( c x ) AT) P ( ~ _cx )e 2 I J ) .

• (C4(13) — A~~’ (8))d~3dcx , (5.1)

where p is a real number , M ,R,S are constant n X n real V

positive definite matrices, and P(u) , 0 < U. < I, is a continuously

differentiable matrix; we assume that P(-C ) is a solution of the

initial value problem for the functional differential equation

P’(cL) — e~~~ATpT ’ ( I_ c x ) = (B-s-~~I ) P ( c x ) + V

I T  T~~~+ e (C + iiA ) P ~~~( I — c x ) ,  0 < cx < 1 , (5.2)

P(0) = ~T (0 )  = p , (5 3)

where P0 is an arbitrary symmetric matrix.

Consider the Fr~chet differentiable functional (5.1) evaluated V

along a solution of (2.l)— (2.2) with initial conditions in 9(SI);

this yields a function of time , denoted by V(t) = V(xt), which is

differentiable along such solution ; after a straightforward but

lengthy computation , and through use of (5.2)-(5.3), we obtain that

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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= 
~~~~ 

V(xt
) = ‘

~
7(x

t
) = _2uV(xt) +

+ x~~(O) [(B
T+31I)M + M (B-FpI) + 2e~~~(R+B

T5B) +

+ (BT+PI)P(O) + P(O) (B-4-pI) + ePt (CT+PAT) P T(T) +

+ e~~P(I) (C+pA) + e~~A
TPT(I) (I3+i~I) +

+ e~~~(B
T+pI)P(T)A + e2PTATP(O) (C+i~A) +

+ e
2
~~
T (CT+pAT)P(O)A}x

t
(0) —

- e
~
’h ( x

t
( O )  ,x t ( - I )  

~~~~~~~~~~~~~~~~~~~~~~~ 

U(xt) ‘ ( 5 .4 )

where

h(xt(0), xt
(_T), 

~~~~~~ 
[x~~(O), -e~~

1
x~~(-I), 

_e~~~
T
c~~~(_T)].

R + BTSB (M+e~~B
TS)C _ (M+e~~B

TS)A xt(O)

CT(M+e~~SB) R — e
2PI

C
TSC e2~~

I
C
T
SA _e

~~
’Tx

t
(_t)

—AT(M+e~~SB) e2~
1T
ATSC s - e2 P I ATSA =e~~~~kt

( _ T )

( 5 . 5 ) .

This computation is valid only on solutions with initial data

on ~~ (~~~
‘) ;  however a direct application of Theorem 3.9 of [16] yields

- .  ~~ V ’V V’V V=-V~ _~~~_ V V V V- V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _



V-V~~~~~~~’V~~~~~~~~~ ’V’

21

that for any solution with initial condition on we have
V(x )-V(x )

that for V (x  ) - 
u r n  

t+L\ 
< U(x~).

The objective of this paper is to show that it is possible

to give an estimate of the rate of growth or decay of the solutions

of the matrix neutral difference—differential equation (2.l)— (2 .2),

using a functional of the form (5.1) and its derivative (5.4).

For this purpose, let I = max{Re IA E a UI) ) .  Given C > 0

and —p = I + 2 C we wish to show there exist  matrices M , R , S and 
V

a differentiable matrix P(cx) satisfying (5.2)-(5.3) so that for

the functionals v ( P )  and U ( ~~) given by (5 .1 )  and ( 5 . 4 )  wi th

these matrices we have that

c11 i q~i ~~~~, < V(P) C
2 1 Ic p I ~~~, (5.6)

and

< —2pV (~P), (5.7)

for some positive constants c1, c2 . If th is  is possible , a norm is

induced by the square root of the Liapunov functional (5.1) ,

which we denote by f I~ I I~1 = {v (P)}1”2. Relationships (5.6)

and ( 5 . 7 )  show that the norms I and I I~ I l~ are equivalent

on ~~~~~~~ and that

Hx~Ii~,. < Hx 0 I j ~ ,, e~~
t , (5.8)

V ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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or

l i x  I I  < I—~-l l i x  I I  e~~
t . ( 5 . 9 )

O~~~’

The estimates (5.8) and (5.9) are precisely those stated in (2.4).

Note that the norm I I I is the best possible one in the sense

that it yields (2.4) ~ VJ j t 1~1 K = 1. Also , if < 0, it follows

from (5.8) or (5.9) that the Liapunov functional (5.1) proves uniform

exponential asymptotic stability for the solutions of (2.1).

In this manner , we have the following.

Theorem 1: Consider the matrix neutral difference-differential

equation with one delay

,~c(t) + Ax (t—T) = Bx(t) + Cx(t—I )

and the Liapunov functional given by equation (5.1). Let

I = max{Re A Idet EA(I+A e~~
’) — B — Ce_XT ] = 0}

and £ > Q~ If there exist constant positive definite matrices M ,R ,S

and a differentiable matrix P (cx), 0 < ~ < t , that satisfies (5.2)

with P(O) = ~ (0)T, such that the inequalities (5.6) and (5.7) hold

with c1,c2 positive and with —p = I + 2C ; then the solutions of the

difference—differential equation satisfy the exponential bound (5.9)

and the equation is exponentially asymptotically stable if p > 0.

In the next two sections we show that an appropriate V

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - --  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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differentiable matr ix P ( c x )  as required by the above theorem can

always be chosen, and we analyze its structure. In a further

section we determine appropriate matrices M ,R and S so that the

conditions for the above theorem are always satisfied . We thus

demonstrate the existence of a Liapunov functional of th e stated fo rm

for the neutral functional differential equation.

At this juncture , we remark , for repeated later use, tha t  for

the particular above choice of —p = y + 2 C , the spectral radius of

e~
T
A is always less than one. Indeed , letting x(t) = e

Pt y ( t ) ,

t > 0, our original functional differential equation (2.1) becomes

~ (t) + e~~A~ (t—t ) = (B+pI)y (t) + (C+pA)e~~
t
y (t—T), t > 0 ,

for which the solution operator is given by T(t)e~
1t , where T(t)

is the solution operator of equation (2.1). Now , using eauation

(2.4) and —p = I + 2 C , we note that  I T ( t ) e Pt I I 
~~~~~~~~~~~~~~~~~ 

<

C > 0, which implies the uniform asymptotic stability of the solution s

of the above equation . But , from [ 5 ] ,  th is  implies tha t  the

solution to the difference equation y(t) + e
1
~
T
Ay(t-t) = 0 is also

uniformly asymptotically stable. Rut this can be the case if and

only if the spectral radius of e~~A is strictly less than one .

6. The Functional Differential Equation for P (cz).

In this section we consider the functional differential

equation

—

~

-----V --— ~~~~~~~~~~~~ •‘VV-’V__V-~V 
~~~~~ V’V~V - V V- V V ~V-’V_~ V~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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pT ” ’T Tp’ (Cx ) — e A~P 
( V C u )  = (B + p I ) P ( C t ) +

+ (CT+pAT)PT(I_ c~) , —~~~ < a < ~~~~ , (6.1)

with the initial condition 
V

= K , (6.2)

where K is an arbitrary n x n matrix. Uithout any loss of

generality, let p = 0 in eauation (6.1), thus obtaining

P’(a) — A
TP T(I_U.) = BTP ( a ) + V

÷ CTPT I_ CC , —~~ < U. < ~~~~. (6.1’)

For the par t icular  case A = 0, name ly

= B
TP(U.) + c

TpT(t.~~) ,  — —- < < (6.1”)

it has been shown in [1) that the solutions of such an equation

with initial conditions given by (6.2) exist and are unique and 
V

that the linear vector space of all solutions of such an equation

has dimension n2; moreover an algebraic representation of these

solutions was presented . The results for the more qeneral equation

(6.1’) are analogous to those presented in [1] for c qu a t ion (6.1”)

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  ~~~~~ 
V ’V’V ’VV-V~~~ V~V~~V-V-V- ~ — -- V V - ---- -V------ - V------VVV----- 
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and we only sketch them here . We assume in the sequel that all

the eigenvalues of A lie strictly inside the unit circle .

Defining the matrix F(u) = PT (.t_U.), the functional differ-

ential equation (6.1’) with the initial condition (6.2) reduces to

the system of ordinary differential equations

p ’ (u) + ATFt (cx) = BTP(U.) + cTF c x )
(6.3)

P~~(a)A + F’(a) = -P(cx)C — F(~c)B

or

p’ (u) — A
TP, (a)A = BTP(U.) + ATP ( ~~) c  + CTF ( V t )  ÷ ATF ( c x ) B

(6.3’)

F’ (a) - ATF , (cx)A = — p ( a ) c  — BTP(U)A — F(a)B — CTF U . A

with initial conditions

= K ,F (~ -) = KT. (6.4)

Consider the notation

P ( i)  = (p.. ( - i ) )  

L~n * ( cxj  
= [p

~ 1 
( cx )  , . .  . 

~~~~~~~~~~ 
( c x ) ] ,

where r1~
(
~
) and P~~~(a) are , respectively, the 1th row and the

col umn of P ( 1) .  Then , equa t ions ( 6 . 3 ’ )  and ( 6 . 4 )  can he rewri t ten ,

through the use of the Kronecker (or direct) product of two matrices

V V~ -- _~~_V-V V ~~~~~~~ ~~~~~~ p--— -~~~~~~~~ V V ~~~ V VV V V- _ _ _ _V

V-
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[10] as the 2n 2 system of ordinary differential equation s

O 1 r p ( cx )
d l

L ° — A ®  

~~ 
—

~~B ® I + A ® C  C X I + A® B 1  p ( cx ) 1
= I ( 6 . 5 )  V

_ I ® B _ C ® A ]  f ( t )
]

with initial conditions

p (~~ ) = [k
1~~

,. . . ,k~~~J
T. f(~~) = [k~ 1,... ,k~~~]

T
. (6.6)

Using the fact  that  1 is not an eigenalue of A , then

I — A is invertible and so is I — A ®A . Thus the system (6.5)

can be rewritten as

d 
r p ( U. )  

-

dcx L f cx

(I — A ®A) ’~ (I - A ®A)
1
~ 

-

p (U. )
• (B ® I + A® C) • (C® I +A ® B )

(6.5’).

(I — A ®A )
1
• (I - A

f (a)

Consider now the uniqueness of solutions of (6.l’)— (6.2). if

this initial value problem has a differentiable solution P(cx )

~

—V

~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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V defined on —~~~ U. < ~~~~ , it follows that the pair of matrices

P(cz),F (c*) with F(cx) = PT(T_a ) will satisfy (6.3), (6.4)

and then the pair of vectors p ( c x ) , f ( c c ) as def ined above , wi l l

satisfy (6.5’), (6.6). Because of the linearity of all the

V equations , and the uniqueness of the solutions of (6.5’), (6.6),

it follows that the solution P (cX ) of (6.1’), (6.2) is unique.

Consider now the question of existence of solutions of

(6.l’)— (6.2). The initial value problem (6.5’)— (6.6) has a unique

solution (p(ct),f(U.)) defined on -
~~~ < ci < ° . This implies the

existence of a unique pair of differentiable matrices P (u),F (~~)

defined on —
~~~ < cx and satisfying (6.3), (6.~~). These equations

can be rewri t ten  as

P ( cx )  + AT ~~~~ F ( a ) = BTP ( ~~) + cT F c x )

~~ F~~(L- ~ c) + AT ~~ pT(1_ () = fl T F( I . . ,~) + CTP ( I _ c x ) ,

wi th the in i t ia l  condition

= 1< = FT(~~).

Then it follows , from the uniqueness of the solutions , that

F ( cx )  = PT(I cx) for -
~~~ U < ~~ .

Moreover , it is well known , [2 ,4 ] ,  that the system (6.5’) has

2n2 l inear ly independent solutions which can be represented in the

~~~~~~~ V V I ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~ -V ‘VV ~~~~~~ V ‘ V V V~~~~ ~~~~~~~_ V V V -  -— -V.V~V ____________--- V - - V 

-
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following fashion . Let A 1,...,A~~, i 
< 2n2, be the distinct

eigenvalues of the matrix in (6.5’), that is , solut ions of the

~determinental equation

— A ®A) A — (B ~ I + A ~ C) —C ~~~ I — B 1
det~ 

= 0; (6.7)

V C + B -~~~ ~~~ (I - A A)\ + (I  B IP C ~~~

each A ., j = l , . .. ~~~~~ V Q ,  with  algebraic multiplicity m . and

geometric multiplicities n~~, ~ n~ = m., m. = 2n2. Then , the
~ r=l ~ j ~

2n 2 linearly independent solutions of (6.5’) are given by

I a—i
~~ 

( - c  — _)  - 
-

~~~ ( c x )  = e 
2 2 e~ , 

(6.8)
j,r i l  (q—i )!

r r 2
where q = l,...,n., r = 1,... ,s, n . = m ., m . = 2n , and the

r=l~~ ~ j ~
2n2 linearly independent eigenvectors and generalized eigenvectors

are given by

i i—l 0[A .I—H]e. = —e. , e. = 0,
j j,r j,r j,s

where H is the 2n2 X 2n 2 matrix in (6.5’). Changing

notation and returning from the vector to the m a t r i x  form , we see

that the 2n
2 l inearly independent solutions of (6.3) are given by

L~:J = ~~~ j 1~ :1u
1 LtlJ ’ ~~~~~~~~~~~~~~~
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for q = l,...,n~~, r 
= l,...,s, j = l , . . . ,p,  ~ n~ =

n=l~~
m. = 2n 2, where the generalized eicjenmatrix pair (L~

’ ,M~j,r j,r

associated with the eigenvalue A . satisfies the equations

(A .I—B)L~ 
- AL~ (CT+ AA T) - CM~ - z~ i~ B~ = AL~ 

1A
T 

-

j j,r j,r j,r j,r j,r

(6. 10)

L~ c
T 

+ BL~ A
T 

+ M~ (A . I+BT) + (C-AA)M~ AT = J ~~~V1~~~
_ h

J ~~
1’ MY

j,r j,r j,r j j,r j,r j,r

for i = l,...,n~ , r = l,...,s, L9 = 0, = 0. The structurej :j,s

of these equations is very special; in fact , if they are multiplied

by — 1 , tr an sposed , and writ ten in reverse order , we have

(-A . I-B)~~ - 
~ T 

(CT_AAT) - CL~ - 
~T 

BT _~~~
_lT

A
T 

+
j j,r j,r j,r j,r j,r j,r

(6.11)

~~T 
c
T 

+ 
~~1T AT + L~ ( A I + B T ) + (C+AA) L~ AT ~~i_ lT

AT 
+

j,r j,r j,r j j,r j,r j,r

T T
for i = 1, . . .  ,n~~, r = 1 ,... ,s, L9 = M’? = 0. This result shows

j j,r j,r

that if A . is a solution of (6.7), -A . will also be a solution ;

moreover , A~ and —A~ have the same geometric multiplicity

V and the same algebraic multiplicity. Thus, the distinc t eigenvalues

always appear in pairs ( A ~~~_ X ~~) .  An examinat ion of equations

V (6.10) and (6.11) shows that if the generalized eigenmatrix pair

corresponding to A. are (L~ r~
M
~ r~~’ 

then the generalized eigen-
~~‘ ~~~ ‘ - .T .i+l 1 i+1 1

matrix pair corresponding to -A w i l l  be ( ( — 1 )  M .  , (-1) L. ) .
j j,r j,r

These remarks show that if the solution (6.8) corresponding to is

V ~~~~~~~

- ——VV -V 

~~~~~~~~~~~~~~~~~~~~~~~ 
V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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added to the solution ( 6 . 8 )  corresponding to ~~~ mul t i plied by
(_1) q+l 

we have n2 l inearly independent solutions of (6.3) given by

= 

- ~ ) q (~ 
q-i Lj , r 

+

Iir~ (cx) I i=l q 
1

L_~’
5 ]

+ ~~~~~ 
- ~ ) q (cx - ) q-i 

- 
q+i 

Mj , r
e ( q — i ) !  .Ti=1 L~j ,r

which satisfy the condit ion 
,r~~~ 

= 

~~~~~~~~ 
This condition

is precisely condition ( 6 . 2 ) ;  it therefore follows that

q (cx - 
t
)
q-i A .  (cx - ~ ) -

~~ (cx) = ~ e 3 
~~~~ +

j,r i
~~~~~~~ 

(q—i)! j,r

(6.12)

—X . ( cx - !) .T I
+ ( 1 ) ~~+1~ ~ 

2

Sr r r 2 2for q = l,...,n., 
~
‘. n. = rn , ~. m. = 2n , are n linearly in—

r=l 2j ~

dependent solutions of (5.10’). Hence , we have shown that

equation (6.1’) has n
2 linearly independent solutions given by

equation (6.12), where the generalized eigenmatrix pairs (L~~~ ,M~~5)

satisfy equation (6.10) for one of the elemen t s of the pa i r

(X., —A.), each of which is a solution of equation (6.7).

- - _ - — V.-- -— V 
~~~~~~~~~~~~~~~~~~~~~ V- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Making use of the above results , it is clear that the functional

differential equation (5.2) with initial condition ( 5 . 3 )  has a uni que

solution p (cx ) defined for -~~~ < a < ~~~.

7. The Matrix Function P ( c x )  and Its Properties.

In this section we show that the solution P(ci) of (6.1) 
V

has an integral representation which is particularly useful for our

purposes. To this end consider the matrix function P (cx) defined by

V 

~~(a)  = 
J Y

T(~~) e  W Y (~~ U)e
11 

~~~~~ 
U. > 0, (7.1)

where W is an arbitrary symmetric matrix , Y(13) is the solution

of equation (2.6) and ii = — 2 C , x- > 0. This in tegral

always converges since , for every C > 0 , we have I I Y ( 1~) I I
( y + C)~3 —

Ke fo r some K > 1.

From (7 .1 )  i t  immediately  fol lows tha t

P ( O ) = ~T ( Ø )  = 
J Y

T(~ )e WY (~ )e~~d0, ( 7 . 2 )  
V

and that

V 

p (ci) fY
T e 6~ i)e~~~~~~d0 =

= ~T(~~) - a < . ( 7 . 3 )

We now show that P ( c x )  sat isf ies  the equat ion

— ePt AT~~
T(I_cx = (B Ti~p I ) P ( c x ) +

+ (CT+llA
T)e~~P

T(~~u), 0 < a < T . (7.4)

_________ V V~~ ~~~~~~~~~~~ 
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Indeed, using equation (2.6) in the defini t ion of ~ ( c x ) ,  we have

= ~~~~~~~~~~~~~~~~~~~~~~~~~ -

- 

1
~T(~) P~~~

P (  
~y (~~~~’)i~~ +

+ I J YT(8)e Y (~~~ ) Bdcd~ +

+ I J:_IyT(~ )eP
~~
eP Y (~-~-I)Cd~d~.

The order of integration in the last two terms can be interchanged ,

yielding

p (ci) = e~
lci ~~~~~~~~~~~~~~~~~~~~~ —

— e~~ Iy
T(~)

P 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +

+ I ~~ yT(~ ) ~~~~~~~~~~~~~~~ e
P (
~~

i)
d~ +

+ I ~
or

p (U.) = e~~
1ci J 1T~~) P

~~~~~~~~
I I+A ) d ~ — e~

’tP(U+I)A +

+ ~~~~~ + P(~ +t )e~
’
~~~~~ CJd~ . (7 5)

V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Every term in ( 7 . 5 )  is an absolutely continuous function ; hence

differentiation of (7.5) gives

= -e~~~[~~ p (ci+T)JA - ~~( U . ) B  - e~~~~(ci+I)C 
-

— p (e~~~ J0
YT e w ~~~~1+M~~ +

V 

+ e~~~ J:~~~~~~ 
+ +I)e

1
~ C]d~ )

or

ci 
~~(a)  = —e~~~[~ -~- ~~~( c x - i - I) ] A  — ~ (a)B — e~

1t P ( a + T ) C  -

- p ( p ( a )  + e~”~~(U + I ) A )

or

~~~~~~ 

~~~~ ( U )  + e1V
~

T
[~~~ ~~( a + T ) ] A  = —j ( c x )  ( B + p I )  —

— ~~~( c x + I )  (C +P A ) e~~

or

~~ ‘ ( c i)  + e~~~~ ’ ( c x ÷ T ) A  = —~~(u )  (B+p I) — ~ (u+I) (C+pA)e~’’

We have, therefore, that p (a) satisfies the equation

(—ci ) + e~~~’ (—a +I)A = —P(—u ) (B-4-pI) — P(—4~-+C ) (C+pJ\)e~
’T ;

_________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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but using property ( 7 . 3 ) ,  we obtain that

~~ t 
(
...

~~~~) 
= — ~~~~~~- P (—u ) = — 

ci ~~~~~

Hence

+ e~
T
~~’ (_ c i + t ) A  = ~

T(cx) (B+ji l) — V

— ~~(— u+I) (C+pA)e ~~

or

— e
PT

A
T
~ 
T(I cx)A = (B

T
+pI)~~(U) + 

V

÷ e~~~(C T+pA T )~~
T ( T _ c i ) .  -.

Because of the uniqueness of the solutions of (5.2)— (5.3),

it is seen that P(a) defined by (7.1) is the un ique solut ion V

of ( 5 . 2 ) — ( 5 . 3 )  with the initial condition prescribed by (7.2).

We now proceed to show that the following relationship

is satisfied:

Z (BT+p I)~~ ( O )  + ~ ( O )  (B+ p I)  +

+ e
PT (CT+pAT)~~T(I) + e

Pt
~~(t)(C+pA) +

+ e ~~ AT~ T ( I ) ( B + p I )  ~~~~~~~~~~~~~~~~~~~~~

+ e211T AT~~( O ) (C+ p A) + e2~~~(CT+pAT)~~(O)A = —W . (7.6) V 

V V V -  ~~~~~~~~~~~~~~~~~~~~~ V- ~~~~~~~~~~~~~~~~ V-~~~~~~~~~~ V V V -  V~~~~~~~~~~~~~~~~~~~~~~~~~ -V V V~~~~~~~V __
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Indeed, using P(O) and PIT) given by (7.1) and the relation

e2P T~~( O )  = 
J Y

T
(~ _T)e WY (~~_T)e~~ d~~,

it is easy to see Z can be represented as

= ~~~~~~~~~ + C
T
Y
T
(~

_ I))e We~
1
~~[ Y ( 6 )  + y ( ~~- I )A ] d~ +

0

+ J [ Y
T
(B) + A

T
Y
T
(~ _I)]e We~~~[ Y ( ~~) B  + y (~~-I)C]d~ +

+ 2p f [y
T(~ ) + ATYT(~ _T)]e We~~~[Y( ~~) + y(~ -I)A]d~~.

Making use of (2.3), we have that 
V

Z f ~~~~~~~ [ [y T(~~) + ATYT(~ _I)]e We~~~[ Y ( ~~) + Y (~ -T)A 1Jd~~, V

from where it follows that Z = -W .

We remark that to each constant symmetric positive def in i te

matrix W there corresponds a matrix function ~~(ci) given by

(7.1). This matrix ~ (ct ) is the unique solution of (5.2)—(5.3)

-~ — Twith the initial condition prescribed by P(O) = P(O) =

J Y
T(B)eP Y(~ )e~~d~ which is necessarily positive definite.

Conversely , to each P(O) = P ( 0 )  P 0, equations (5V.2)—(5.3) have

a unique d i ffe ren t i ab le  solution P ( U )  which , through ( 7 . 6 )  defines a

unique symmetric matrix W with the property that for this W ,

- V V V V V~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(7.1) gives the unique solution for (5.2)— (5.3) ~ith the pre-

scribed initial condition . It follows that the map W ÷

def ined by

P ( O )  = 
j 1

Y T eh 1~~~~~~~~~~~~~~ ,

as a map on the space of n — n symmetric matrices is one—to-one ,

onto , and it maps positive definite matrices ~‘1 into positive

definite matrices i~( O ) .

8. Structure of the Liapunov Functional and Its Derivative.

The characterization given in the previous sections for the V

matrix function P(ci) permit us to put into evidence the particular

structure of the Liapunov functional (5.1) and its derivative (5.4).

In fact , the substitution of the representation (7.1) for P(x) into V

the Liapunov functional (5.1), yields

v (~ ) = ~T(0)14~~( 0) + e~~ J

°
~~
T ( 0 ) R 2PO

~~(e)dQ +

+ e~~ J

°
~~~

’T(t))S 2P0
~~J (0)dO +

+ 
J

t [Y (6) + Y (~~-T )A ]-~ ( O )  +

+ J Y(~~ cx~ I) [C-p (cx) - A~~’(cx) ]dcx}TWe 2~~~.

+ Y ( ~ -T )AJ~~( O )  +

to
+ Y (~~— ci — c ) [C~~(u) — AVt ’ (ci)]dcx ~ d0.

.J — Vt

_ _ _ _ _ _ _ _  -~~~~~~~~~~~ V - ~~~~~~~- ---~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
V V ~~ V V - - V V - V V~~~~~V-~~~~~~~~~
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But this functional , using (2.5), can he represented as V

V(xt) = x
~~
(O)Mx t (O) + e1

~~ f

O
x~~ o R e 2P 8 xt o d o

+ e~~ J
°
x~ T o s e 2 x O )dO +

+ J x t+~~( O ) W e 2 V
x
t+B

( O ) d ~~, (8.1)

where x
t+~~

(O) is the solution of (2. l)—(2.2) for ~3 > 0 with

initial condition x
~~

(O )i -T < 0 < 0.

In an analogous manner , using the above notation , equation ~~~~ V

can be rewritten as

~
1(x

t
) = _ 2 P V ( X t ) +

+ x~~( O )  [—
~~~ 

+ (A T+ p I ) r l  + M ( A+p I)  + 2e~~~(R+B TS B ) ] x
t

( O )

— 
~~~ [x~~( O )  , 

- e~
1
x~~(-t), -e~~~

t
k~~(-t)]

R + BTSB t 4 ~~~~
T
sjc _ [fl+e~~ B

TS ]A  x
t
(O)

• CT [M+e ~~
t

SB ] R - 02~~c
Tsc e

2
~~
T
C
T
SA _e

~~
”xt

(_I ) .

_AT [M+C
PI
SB) e

2
~~~A

T
SC S — e

2PI
A
TSA — e

~~~~~~~
( — I )

(8.2)

_ _ _ _  - V . -
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9. Bounds for the Liapunov Functional and Its Derivative.

The structure of the Liapunov functional (5.1) and its

derivative (5.4) developed in the previous sections allows us to

establish that it is, always possible to choose positive definite

matrices M,R,S and W (and therefore P ( a ) )  so that  hounds of

the form (5.6) and (5.7) always hold. For this purpose , f i rst we

will show that there exist positive constants c
1
,c2 such t h a t

c1 1 -

~~~~I 

2 < 
~~~~ 

< c2~ ~~~~~ 
(9.1) —

for all ~ E ~~~~~~~~~~~

Denote by A~ 1~~r -I) and A
max (M) the min imum and maximum

eigenvalues of the positive definite matrix M , the corresponding

notation to be used for the positive definite matrices R,S and W .

From (8.1) it immediately f o l lows tha t

min(A mjn (M) ,e
~~~~~

’Amjn ( R )  ,e
~~~~~~

A min ( S ) )  I I~ I I~~ < V (~~) .

Using (2.4) , it is easily seen that

I I~~~ 0) I 
~~n 

I ~~I !~ < Ke~~~~~~I Ix 0 i I~~

Thus , from ( 8 . 1 )  it fol lows tha t  

-~~~~~ ---VV - - - --V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~
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V (~~) < [ m a x ( A  ( M ) ~~~C
l V l V

V
m a x

( R ) ~~~e J
~~~~~~~A

r a x
( S ) )  +

A ( W )max 2~ 2
+ 2C K i

The desired values of c1, c2 will therefore be given by

c
1 

= min(A . (H) ,e 1
~ 

fT A min (R ) ,eH~
1 I T A ( S ) ) ,

and

V A (~~1)

c max(A - (M) ,e h 1~ I ~A ( R )  ~~~~ ~A (s)) + 
max 

K
2

2 nun max max 2E

Secondly ,  we proceed to show that  equat ion (5.7) always holds .

Equation (8.2) shows that we only need to choose the positive

def in i t ion  matrices W ,R ,S and M in such a man ne r tha t  the f u n c t i o n

hu
(x
t

(0) , x
t
(-I),xt

(-I))

~~ (AT~~I)~~M (A~~I) [M~~~~B
TSJCe~~ [~~~

PT
B
T
S]~~

PT x
t

(O ) 
—

T p1
-(R-1-B SB)e

C
T[~~~

PI
SBjePT [R~c

2 
C
T
SC]~~

1I 
O3~

1
C
TSA

_AT[~~~
uI
SBJe~~ e

3
~~A

T
SC [S_e2~

t
A
T
SA}e~

1 
—e~~

’
~~~(—i)

is nohnegative . ~e note tha t  th is fo rm can be rewr i t t en  as

V V V~~~~~~~~~~~~~~~~~~~~~~ V



_____ 
V V V  ~~ V V V V V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

40

hi(xt(O),xt
(_u),

~t
(_T)) =

= e~
’[x~(O) (~~~

Um BTS) ,_e PL xT(_l)CT _e_PI~
T(_I)ATJ .

i + ~~ s~~e 2
~’ I —I (

~~~~
SB)xt(0)

i i + ~~_  se
2
~~ Se2~~ _c

~~~
cxt

(_L ) +

Se21
~ E S e 2

~’ —e~~ 
1
~~ t

(_ I)

+ x~ (0) [W — (AT+uI)N — ~4 (A+pI) — ( R÷BTSB) e ~~ —

— e (Il+e~~B
TS) (I + ~~~

— S~~e
_ 2 

)(H+ePISB) } (0) +

—p ’ T T 2pI 2 2p1
+ e x

t
(_I) ER — C (So + I + — Se )C}x (—I)

C
1

+ e
~~~

c
t
(_I) [S — (1+C

l
)e 2PTATSA]*t

(_T) , (9.2) 
V

where C
1 

is an arb i t r a ry  posit ive number .

First  of all , note tha t since the spectral  radius  of e~~ A

is s t r i c t ly  less tha n one , then for  C~~ > 0 suf f ic i e n t l y  small

there always exist a positive definite matrix S such that

S — ( l4 C
1) e 2

~~~ATSA > 0.

Now we choose R as

R = cT(I + e
2PT (l + ~— )S)C+ C I;

- _  V~~~~~~~~~~~~~~~ 1 V V~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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R is then a positive definite matrix .

The matrix

W — (A~+p I )M - M(A+pI) - (R+BTSB)e~~ -

— e (M+eP Vt
BTS) (I + -~~-- S

l
e

21V
~5 

1

1

-i

will certainly he positive definite by ta1-~ iV n q  ~ = T a n d W = k I ,
W

kW 
> 0 s u f f i c i e n t ly large.

Finally ,  from the particular form of the first term in (9.2)

it is easily seen that this term is positive semidefinite.

In this manner , it is seen that the form h
1

(x
t

( O ),xt
(_I),

~~t
(_I))

can be always made nonnegative

All the above results can thus be summarized in the form of a

Theorem 2: Consider the matrix neutral difference-differential

V 
equation with one delay

~ (t) + Mt~(t—i) = 13x(t)  + Cx (t-C)

and the Liapunov functional given by equation (5.1). Let

I = max{Re A I d e t [ A ( I + A e ~~~
’) - B — Ce

1 ] = 0 }

and C > 0. Then there exist constant positive definite matrices

M , R and S, and a differentiable matrix P(-~), 0 
< ci < I ,

with P(O) = ~ ( 0 ) T such that the functional V is positive

definite , bounded above , and

-V--V ~~~V-VV -~~~~VV -V ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ VV ~~ k~~~-~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~V-V ~ 
- ~~~~~~~~~~~~~~~~~ à. ~~~~~~~~~~~~~~~~~~~~~ - aiIl~~~
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< 2( y- i - i- ) V.

Note that, if I < 0, then the above result yields ex-

ponential asymptotic stability .

hi. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -
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